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A B S T R A C T   

There are many research studies and emerging tools using artificial intelligence (AI) and machine learning to 
augment flow and mass cytometry workflows. Emerging AI tools can quickly identify common cell populations 
with continuous improvement of accuracy, uncover patterns in high-dimensional cytometric data that are un-
detectable by human analysis, facilitate the discovery of cell subpopulations, perform semi-automated immune 
cell profiling, and demonstrate potential to automate aspects of clinical multiparameter flow cytometric (MFC) 
diagnostic workflow. Utilizing AI in the analysis of cytometry samples can reduce subjective variability and assist 
in breakthroughs in understanding diseases. 

Here we review the diverse types of AI that are being applied to clinical cytometry data and how AI is driving 
advances in data analysis to improve diagnostic sensitivity and accuracy. We review supervised and unsupervised 
clustering algorithms for cell population identification, various dimensionality reduction techniques, and their 
utilities in visualization and machine learning pipelines, and supervised learning approaches for classifying 
entire cytometry samples.Understanding the AI landscape will enable pathologists to better utilize open source 
and commercially available tools, plan exploratory research projects to characterize diseases, and work with 
machine learning and data scientists to implement clinical data analysis pipelines.    

List of Abbreviations 
AI Artificial Intelligence 
ML Machine Learning 
MFC Multi-color Flow Cytometry 

Background 

The World Health Organization’s classification of hematopoietic and 
lymphoid tissue recognizes lineage assignment by immunophenotyping 
as essential in establishing and subcategorizing hematolymphoid ma-
lignancies. Multiparameter flow cytometry (MFC) is a major contributor 
to establishing immunophenotypes of cell populations. Traditionally, 
processing and staining of samples for flow cytometry and analysis of 
flow cytometric data have been labor-intensive processes that require 
highly trained technicians and pathologists. Recent advancements in 
automated processing and staining have shown promise in increasing 
workflow efficiency and reducing human error. Recent advancements in 

data analysis via artificial intelligence (AI) demonstrate potential to 
improve intra- and inter-laboratory standardization and the accuracy 
and sensitivity of diagnosis. As AI continually improves, it holds the 
potential to augment and automate aspects of the gating workflow, 
uncover insights into diseases, decrease expenses, and increase labora-
tory efficiency. 

Current flow cytometric analysis involves manual gating of bivariate 
plots in a sequential or non-sequential manner. Hierarchical gating 
systematically evaluates bivariate plots using rigid threshold values to 
create “child” populations from “parent” populations with the gating 
criteria of the parent gate passed onto the child gate. Non-hierarchical 
gating (e.g., Boolean gating and manual cluster analysis) employs an 
‘and,’ ‘or’ and ‘not’ logic and relies on the expertise of the operator to 
evaluate any number of bivariate plots, often applying non-rigid, hand 
drawn gates to arrive at the final labeled cell populations of interest. 
With either approach, the results of analyzing flow cytometry samples 
via manual gating are operator dependent, and differences in analytic 
approaches and the knowledge and experience of operators lead to 
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variability of results1,2. While non-hierarchical gating may overcome 
some limitations of hierarchical gating and achieve highly accurate re-
sults, non-hierarchical gating will encounter greater challenges in 
timeliness as more in-depth characterizations of cell populations are 
made possible by an increasing number of markers present in a single 
panel. Furthermore, manual gating in general is sometimes limited by 
the fact that two cell sub-populations may not be fully resolved with any 
combination of bivariate plots, even though they can be fully resolved if 
all the markers are considered simultaneously in high dimensional 
space. AI is well-suited for simultaneously analyzing hundreds of unique 
combinations of markers to identify cell populations and presenting 
them in an interpretable format (Fig. 1). With modern flow cytometers 
showing potential to resolve over 40 fluorescent markers per cell, there 
is a rich opportunity to leverage AI approaches to both automate and 
augment analysis workflows in clinical flow cytometry. 

AI research in clinical MFC 

Introduction 

Emerging AI tools show promise to augment routine MFC and mass 
cytometry analyses by automatically identifying cell populations, 
reducing analysis variability, and predicting when follow-on procedures 
are necessary (e.g., add-on tubes). AI algorithms paired with large 
clinical databases, such as Cytognos’s EuroFlow, can automatically 
identify all major cell types and even flag minor alterations in immu-
nophenotype that can be missed with manual analysis, provided the 
pipeline from sample processing to data acquisition is highly standard-
ized. State-of-the-art AI algorithms have been shown to produce unbi-
ased results and can reduce variability by 94% compared to manual 
approaches, as demonstrated by the FlowCAP (Critical Assessment of 
Population Identification Methods) competition3. Deciphering the 
immunophenotype of many hematolymphoid neoplasms requires 
sequential rounds of MFC marker panels, and AI has shown potential to 
flag when an add-on tube is required4. In addition to automating routine 
analyses, data-driven studies leveraging AI with FCS/mass cytometry 
have uncovered previously unrecognized cell subpopulations of 
diseased patients. As major innovations in AI continue to make their way 
into clinical FCS laboratories, an understanding of the types of AI al-
gorithms is key for recognizing their potential and limitations for 
guiding routine analyses and clinical discovery. Table 1 highlights many 
available AI software and packages for use with flow and mass cytom-
etry data. 

AI is a broad field loosely defined as any technique that enables 
computers to mimic human intelligence. Machine learning (ML) is a 
subfield of AI that involves statistical algorithms that enable machines to 
improve at performing tasks5. Classical ML algorithms for classification 
include logistic regression, k-nearest neighbors, naïve Bayes, decision 
tress, ensemble algorithms including random forest, support vector 
machines, and neural networks6. Deep learning (DL) is a type of neural 
network architecture, and thus a subtype of ML, that involves stacking 

multiple layers of neural networks in sequence. This allows for the 
learning of more complex representations of data, and deep learning 
networks are often trained using large amounts of data. The algorithms 
made to automate gating, classify samples with a certain disease, find 
and remove outlier events, etc., all fall into the ML or DL categories. 

ML and DL algorithms can be supervised or unsupervised, and this 
distinction has downstream implications regarding utility. In the context 
of cytometry, unsupervised algorithms are used to cluster data points, 
which can be individual cells or an entire MFC or mass cytometry 
sample. Unsupervised algorithms operate using built-in assumptions 
regarding the structure of the data to produce their results; however, 
clusters must still be manually inspected by the operator and assigned an 
identity and accuracy. Over the greater course of a decade, unsupervised 
algorithms for MFC and mass cytometry have been innovated to identify 
rare subpopulations with only a few dozen cells, cluster large cytometry 
files with tens of millions of cells in seconds and facilitate new insights 
into a variety of biological phenomena. 

Supervised algorithms require that for each cell or sample, a corre-
sponding label is given. These labels are often referred to as the ground 
truth and are used to train the algorithm and assess performance. Su-
pervised algorithms have been used to predict cell type identities and 
sample-level labels, like a disease label or whether an add-on flow tube 
is required to further characterize an abnormal population of cells. 
While the output of supervised models is quick and easy to comprehend, 
the veracity of predicted labels is dependent on the fidelity of the ground 
truth labels. Further, the general utility of the trained model is highly 
dependent on the similarity, statistically speaking, between any new 
data the model encounters with that of the training set. If performance 
on the new data is lacking, a deeper analysis can be done to understand 
differences in the underlying data structure. After careful consideration, 
new data can be incorporated into the original dataset and the model can 
be retrained, but it is important to first understand why the model’s 
performance was originally insufficient on the new data. 

Preparation of data for machine learning 

In MFC clinical practice, standardization is highly emphasized to 
ensure consistent results from day to day. Samples are processed using 
similar protocols, cytometers are calibrated daily using reference stan-
dards, and a consistent antibody marker panel is often used for extended 
periods of time. Without standardization, data can vary greatly and 
become challenging for algorithms and even experts to compare with 
high accuracy. 

Different AI algorithms require varying amounts of pre-processing to 
achieve optimal performance. Prior to analysis, flow cytometry data 
must be compensated, transformed, and cleaned (removing debris and 
doublets) to faithfully gate cell populations of interest. Similarly, many 
algorithms will perform better if fed MFC data that has been subject to a 
similar pre-processing workflow. In conventional MFC, spillover of flu-
orophore emission spectra is corrected by compensation. Applying 
compensation to raw data equates to solving a system of linear equations 

Fig. 1. – AI can identify clusters from high-dimensional MFC data and facilitate human interpretable visualization. A single 10-channel MFC sample contains 105 
unique bivariate plots (left). AI identifies clusters, representative of cell populations, and compresses them into a single, unitless bivariate plot (middle), referred to as 
a latent representation (right). 
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Table 1 
Software AI tools for cytometry data.  

Algorithm Algorithm Brief 
Description 

Environment & 
Availability 

Ref. 

Preprocessing & Quality Control 
flowAI Cleaning based on signal, 

flow rate, and outliers 
R package from 
Bioconductor 

15 

flowClean Detecting anomalies in 
signal 

R package from 
Bioconductor 

16 

flowCut Detecting anomalies in 
signal 

R package from 
Bioconductor 

46 

flowVS Data transformation R package from 
Bioconductor 

47 

OTflow Optimal transformation 
selection 

Surfdrive repository 11 

Unsupervised Clustering 
PhenoGraph Graph creation via KNN 

clustering followed by 
Jaccard similarity. Final 
partitioning of the graph 
via Louvain or Leiden 
algorithm into 
communities based on 
modularity optimization. 

Python package, 
Cytobank 

39,48 

FLOCK Partitioning of each 
dimension into bins, 
followed by merging of 
dense regions, and 
density-based clustering 

C source code (also 
available in ImmPort 
online platform) 

40 

FlowPeaks Peak-finding on smoothed 
density function generated 
by k-means; using finite 
mixture model. 

R package from 
Bioconductor 

41 

X-shift Weighted k-nearest- 
neighbor density 
estimation with 
identification of local 
maxima and construction 
of graph with cluster 
merging. 

Standalone application 
(VorteX) with graphical 
interface (command-line 
version also available) 

42 

MegaClust Parallel density-based 
hierarchical clustering. 

Standalone software 
with CLI (GitHub 
repository) and paid 
service platform 

36,37 

FlowGrid Time and memory 
efficient grid-based 
adaptation of density- 
clustering for detection of 
high-density regions and 
outliers. 

Standalone software 
with CLI (GitHub 
repository) 

43 

Gaussian Mean 
Shift 

Density-based clustering 
with a kernel bandwidth 
parameter. 

Open-source standalone 
software application 
through Cytosplore 

49 

ACCENSE t-SNE followed by density- 
based peak-finding and 
clustering of t-SNE 
components. 

Standalone application 
with graphical interface 

50 

ClusterX Density-based clustering 
on t-SNE projection map; 
faster than DensVM. 

R package (Cytofkit) 
from Bioconductor 

44 

immunoclust Iterative clustering with 
mixture models and 
classification likelihood 

R package from 
Bioconductor 

25 

ASPIRE Nonparametric Bayesian 
mixture modeling using 
Dirichlet process that 
explicitly models random 
effects. 

C++ standalone 
software; MATLAB 
scripts 

26 

FlowSOM Self-organizing maps, with 
merging ofclusters via 
hierarchical consensus. 

R package from 
Bioconductor; 
Cytosplore; Cytobank 

32,33 

Rclusterpp Memory-efficient 
hierarchical clustering for 
large-scale use. 

R package from GitHub 
(older version on CRAN) 

34 

BayesFlow parametric Bayesian 
multivariate mixture 
modeling explicitly  

29  

Table 1 (continued ) 

Algorithm Algorithm Brief 
Description 

Environment & 
Availability 

Ref. 

modeling variation in cell 
population shape followed 
by Markov Chain Monte 
Carlo sampling and 
merging of model 
components 

flowGM Gaussian mixture model 
with number of clusters 
determined via Bayesian 
information criterion 

MATLAB from Statistics 
Toolbox; R from 
flowCore package 

30 

SamSPECTRAL Efficient spectral 
clustering using density- 
based downsampling 

R package from 
Bioconductor 

38 

flowClust/ 
Merge 

multivariate t mixture 
modeling and entropy- 
based merging 

R package from 
Bioconductor 

22,23 

SWIFT Gaussian mixture model 
followed by splitting and 
merging of clusters. 

GUI via MATLAB 27 

flowMeans k-means clustering and 
merging to allow non- 
spherical clusters 

R package from 
Bioconductor 

31 

SPADE Organizes clusters into a 
branching hierarchy using 
density-based sampling, k- 
means clustering and 
minimum spanning trees 

R package from GitHub 
(older version on 
Bioconductor); Cytobank 

35 

Dimensionality Reduction 
viSNE Non-linear dimensionality 

reduction 
Cytobank; Cytosplore; 
Cytofkit 

48,51 

A-tSNE Approximated and user 
steerable tSNE 

Cytosplore 49,52 

HSNE Hierarchical tSNE Cytosplore 53 

Fit-SNE Non-linear dimensionality 
reduction 

R Bioconductor; Python; 
MATLAB 

54 

tSNE-CUDA GPU-accelerated non- 
linear dimensionality 
reduction 

Cytobank 55 

opt-SNE Non-linear dimensionality 
reduction 

Cytobank 56 

UMAP Non-linear dimensionality 
reduction 

R; Python; FlowJo 4,57,58 

PHATE Non-linear dimensionality 
reduction 

Python 59,60 

Supervised Cell Identity Classification 
CellCNN Representation learning 

using a convolutional 
neural network adapted to 
process unordered multi- 
cell inputs 

Python 61 

DensVM Density-based clustering 
on t-SNE projection map; 
like ACCENSE, with 
additional support vector 
machine to classify 
uncertain points. 

R package (cytofkit) 
from Bioconductor 

45 

flowDensity Supervised density-based 
clustering 

R package from 
Bioconductor 

62 

flowLearn Semi-supervised 
clustering using density- 
based alignments 

R package from 
Bioconductor 

63 

Pipelines 
Cytofast Visual and quantitative 

analysis for immune 
profiling after clustering 

R package from 
Bioconductor 

64 

Cytosplore Interactive visual analysis 
system containing A-tSNE, 
HSNE, and SPADE 

Interactive standalone 
software 

49 

Cytofkit Preprocessing; clustering 
(DensVM, FlowSOM, 
ClusterX, or Phenograph); 
data visualization (PCA, t- 
SNE) 

R package from 
Bioconductor, GUI with 
Shiny application 

44 

Citrus R package with GUI; 
Cytobank 

21 

(continued on next page) 
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to produce the spillover matrix which is then inverted and multiplied 
with the raw data to produce compensated data7. Usually, compensation 
is applied prior to algorithm training. However, a recent study by Camp 
et al. shows that deep neural networks, which are universal function 
approximators 8,9, are not impacted in their ability to classify cell types 
in samples from patients with myelodysplastic syndrome10. In spectral 
MFC, all emission spectra for each fluorophore are captured and spill-
over is corrected by unmixing. While adjusting all fluorescent data with 
one transformation is preferred over raw values, sometimes for specific 
samples, fluorophores, antibodies, etc. there are certain transformations 
that facilitate the separation of distinct cell populations while other 
transformations show only a single homogeneous population. OTflow 
(optimal transformation of flow cytometry data), is an algorithmic 
approach for choosing proper channel-wise transformations by Folcar-
elli et al. which prevents improper transformations that would obscure 
fluorescent intensities from separate populations from being applied 11. 
On a related note, many ML algorithms perform best on scaled data. 
Scaling the data ensure that all features are considered equally during 
training. A common approach to preserve each feature’s distribution is 
to transform with a minimum/maximum scaler that sets values for all 
features between 0 and 1. Removing debris and doublets can be essential 
for many algorithms. Doublets are defined as two cells that pass simul-
taneously through the light source simultaneously, generating erroneous 
events with elevated cell size, complexity, and fluorescence intensity. 
Removing doublets better attunes ML models to cell populations with 
elevated fluorescent intensities. Debris is often removed prior to 
downstream analyses as large amounts of it can occlude populations of 
interest. Debris is relatively easy to identify when plotting side scatter 
versus forward scatter since cell populations of interest have 
well-established relative value ranges. In addition to removal of artifacts 
like doublets and debris, choosing transformations is a key step for 
optimal performance. 

R software packages in Bioconductor offer an entire suite for pre- 
processing of MFC samples. Automated compensation and trans-
formation can be done with flowCore12 and flowUtils13, and the flow-
Stats14 package has methods for normalizing sample values to facilitate 
better downstream automated analysis. FlowAI15 and flowClean16 help 
identify and remove low-quality events. FlowAI is an R package via 
Bioconductor that automatically detects anomalies that derive from 
stark changes in flow rate, instability of signal acquisition, and outliers 
in the dynamic range of intensity values. FlowClean is an algorithm that 
finds fluctuations in fluorescence intensities related to specific acquisi-
tion time points and flags them for quality checking. FlowViz17, Flow-
Plots, and ggcyto 18 are R packages that facilitate efficient visualization 
of gates and transformations across all samples in the dataset. For more 
details on using these open-source tools and more in R for flow cytom-
etry analysis, we refer readers to the relevant references 19 and 20. 

Unsupervised clustering 

Unsupervised clustering algorithms group cells based on marker 
expression patterns in the high-dimensional space, considering all 
markers simultaneously without assumptions (Fig. 2 Left). In this 
manner, clustering is useful for automatically identifying previously 
unrecognized cell subpopulations as manual gating evaluates markers 
two at a time in a sequential fashion. Robert F. Murphy originally sug-
gested a clustering strategy for cytometry data in 1985 21. Since then, 
numerous clustering algorithms for cytometry data have been devel-
oped, of which many have been shown to closely recapitulate results 
produced from manual gating. However, performance can vary signifi-
cantly between datasets and clustering performance should always be 
critically assessed on new panels or sample types prior to leveraging the 
AI to help semi-automate gating. 

Unsupervised clustering algorithms for MFC 
Many unsupervised clustering algorithms can run fully automated 

and require no input from the user, whereas others may require the user 
to adjust parameters such as the total number of expected cell pop-
ulations. Distinct types of clustering algorithms vary in their underlying 
assumptions, performance, and capabilities. Model-based methods such 
as flowClust22, flowMerge23, FLAME24, immunoclust25, ASPIRE26, 
SWIFT27,28, BayesFlow29, and flowGM30 fit statistical models to the 
distribution of the data to assign cells to clusters, while other 
model-based algorithms use a centroid-based approach (e.g., kMeans, 
flowMeans31) or a self-organizing map (FlowSOM32,33) to fit the best 
representative for each cluster. Some use hierarchical clustering tech-
niques (Rclusterpp34, SPADE35, ADICyt3, MegaClust36,37), while others 
model the data using an underlying graph structure (e.g., SamSPEC-
TRAL38, PhenoGraph39). Finally, several algorithms use data density, 
such as FLOCK40, flowPeaks41, X-shift 42, and FlowGrid43, or the density 
of a reduced data space, for example, ACCENSE44, DensVM45, and 
ClusterX44. 

Unsupervised algorithm comparisons 
Two studies have evaluated several unsupervised algorithms 

mentioned above and found that some perform more robustly and 
consistently in faithfully gating cell populations across various samples. 
In the FlowCAP competition, fully automated clustering was shown to 
closely approximate expert gating in low-dimensional flow cytometry 
samples with 3 – 10 fluorescent markers 3. Interestingly, representative 
algorithms from each of the five types mentioned above performed 
comparably relative to expert manual gating, with mean F1 scores in the 
0.85 – 0.89 range (ADICyt, flowMeans, FLOCK, FLAME, SamSPEC-
TRAL). Also, creating an ensemble of the best algorithms enhanced 
performance beyond any single algorithm. Concluding the positive 
performance of many algorithms on the FlowCAP challenge, two major 
problems in the field included accurate detection of rare subpopulations 
and performance on cytometry samples with more markers and events. 
This led to new algorithms being developed like PhenoGraph, X-shift, 
FlowSOM to name just a few. A more recent comparison of clustering 
methods evaluated established and emerging algorithms across four 
high-dimensional mass cytometry datasets and two flow cytometry 
datasets containing rare cell subpopulations67. In the mass cytometry 
samples, the algorithms were measured on their ability to identify 14 – 
24 populations of interest ranging in size from several hundred to tens of 
thousands of cells. In the flow cytometry datasets, the task was accuracy 
of clustering the single rare subpopulation. Performance on the mass 
cytometry samples revealed much more discordance than found in the 
FlowCAP competition; this was attributed to notably inferior perfor-
mance for all algorithms for one to three of the low-abundance pop-
ulations. In the mass cytometry challenges, the mean F1 scores for the 
top six clustering algorithms ranged from 0.624 – 0.671, represented by 
flowMeans, FlowSOM, and X-shift, with FLOCK, ClusterX, and Pheno-
Graph close behind. FlowSOM scored the best on three of the four 

Table 1 (continued ) 

Algorithm Algorithm Brief 
Description 

Environment & 
Availability 

Ref. 

Unsupervised clustering 
and regularized regression 
model 

OpenCyto Template-based 
automated gating 

R package from 
Bioconductor/GUI with 
shinyCyto application 

65 

TerraFlow Automated 
characterization of 
differences in cell 
population between 
labeled sample types. 
Streamlined 
combinatorics, linear 
regression, network 
analysis, Feature 
elimination with weighted 
Lasso regression 

Commercial 66  
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datasets and possessed one of the shortest runtimes. The same study also 
compared the algorithms in their ability to identify a single rare sub-
population on two separate MFC datasets, where the population of in-
terest represented less than 400 cells with 0.8% or 0.03% abundance. 
X-shift performed the best in both cases with an F-1 score of 0.531 and 
0.802. As demonstrated in these comparison studies, there is not a single 
algorithm that performs best across all samples, and performance of the 
best algorithms can vary widely from sample to sample. 

It can be helpful to consider runtime performance when evaluating 
the usability of clustering algorithms in clinical workflows. Some clus-
tering hundreds of thousands of cells can drive some top-performing 
algorithms’ runtime into many hours just for a single sample. In a 
comparison with large samples, model-based approaches like immuno-
Clust, flowClust, and SWIFT and density-based approaches like X-shift, 
ClusterX, and DensVM had the longest runtimes of one-to-many hours. 
In the same trial FlowSOM, FLOCK, and PhenoGraph had the fastest 
runtimes with competitive performance. FlowGrid is a recently devel-
oped clustering algorithm that provides the benefits of a density-based 
algorithm with the scalability of a grid-based method, that can be 
used to cluster tens of millions of cells in seconds with accuracy com-
parable to top methods like FlowSOM, FlowPeaks, and FLOCK43. Faster 
algorithms with similar performance are preferable in a clinical setting 
since running them ties up machine resources, potentially hindering 
flow cytometry analysis software which is also computationally 
demanding. Parallelization is unlikely without involvement of a dedi-
cated compute server so an algorithm that takes several hours or more to 
produce an output is unlikely to keep pace with the daily demand of 
cases. Even if an algorithm is run in the background, having technicians 
and pathologists return to their initial results several hours later is a 
hindrance to efficiency and unlikely to be adopted in routine clinical 
workflow. 

Dimensionality reduction 

Given the high-dimensional nature of MFC, dimensionality reduction 
techniques that provide summarized, human-interpretable representa-
tions have long been explored. Dimensionality reduction algorithms 
produce a compressed representation of the original data in an unsu-
pervised fashion (Fig. 2 right). They do not assign cluster/community 
identities but are frequently used to visualize them, and often naturally 
partition cell populations into visual clusters. In a standard clinical 
workflow, a collection of 2D scatter plots is used to visualize MFC data. 
In each plot, two of the available markers are chosen and placed against 
one another on the two axes of the figure. However, pairwise analysis 
becomes incredibly cumbersome with the growing number of markers 
offered by novel acquisition approaches, with modern flow cytometers 
being able to support more than 40 fluorescent markers in a single 
sample and mass cytometers often acquiring 32 or more measurements 
per cell. Dimensionality reduction compresses high-dimensional data by 
locating a low-dimensional representation, often just two features, that 
keeps as much of the high-dimensional input’s structure as feasible. In 
this way, dimensionality reduction algorithms are proving indispensable 
for visualizing single or multi-sample high-dimensional MFC data, as 
they confer the underlying structure and interrelationships of the cell 
populations in a single plot that is readily interpretable by human op-
erators (Fig. 1). 

PCA 
Principal component analysis (PCA) reduces the dimensions of a flow 

cytometry sample usually into principal components that reflect the 
most prominent sources of co-variation of marker expression each cell. 
The top two principal components are usually plotted to produce a 
visualization of every cell. PCA components are also useful as inputs for 
ML algorithms to discriminate different cell and sample types. Methods 

Fig. 2. – Unsupervised approaches for MFC analysis. Left: Unsupervised Clustering. An ungated MFC sample is processed by the AI, whereby clusters are assigned to 
each event (cell). Right: Dimensionality reduction. An ungated MFC sample is reduced to a 2-dimensional latent representation allowing for easier visualization. 
Dimensionality reduction can also be applied to MFC samples with assigned cell identities. 

Fig. 3. – Supervised classification approaches for MFC anal-
ysis. Top: Supervised classifiers for inferring cell identity. ML/ 
DL Classifiers use large datasets of MFC samples to predict cell 
identities in new cases. Template-based classifiers use a tem-
plate generated from one or a few samples to replicate the 
gating scheme on new cases. Bottom: Supervised classifiers for 
sample-level labels. Models have been trained to predict 
sample-level labels, like the disease associated with an MFC 
sample or if an add-on tube is recommended. MFC – multi- 
color flow cytometry, ML - machine learning, DL – deep 
learning.   
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such as Automated Population Separator (APC)68, The Flow cytometric 
Orthogonal Orientation for Diagnosis (FLOOD)69, and Discriminant 
Analysis of MultiAspect CYTometry (DAMACY)70 all use PCA followed 
by additional analysis algorithms for sample-level classification. APC 
(Affinity Propagation Clustering) was originally used to classify gated 
CD19+ neoplastic B-cells in patients with one of three different mature 
B-cell lymphoproliferative disorders 68. FLOOD was originally tested on 
its ability to automatically detect samples that had been exposed to 
lipopolysaccharide (LPS)69. DAMACY was used on several datasets to 
classify AML, asthma, and exposure to LPS70. 

t-SNE 
Distributed stochastic neighbor embedding has recently emerged as 

the premier dimensionality reduction strategy for visualizing and sub-
sequently (via a different algorithm) clustering cell populations. While 
PCA has been most developed for MFC sample-level classification, the 
rigid linear transformation it imposes typically does not map well to 
identifying cell populations. t- viSNE51 is a fundamental component of 
numerous cytometry analysis systems including Cytobank71, Cytos-
plore49, and cytofkit44. tSNE is a nonlinear dimensionality reduction 
technique developed to preserve local neighborhoods, rather than 
relative distances. 

The procedure of t-SNE begins by measuring local neighborhoods in 
the high-dimensional space and connected by a minimum quantity of 
distance, e.g., Euclidean space. t-SNE aims to preserve local neighbor-
hoods by augmenting these neighborhoods. In the second step, t-SNE 
optimizes the point placement in the low-dimensional space, such that 
the resulting mapping groups neighbors of the high-dimensional space 
into neighborhoods in the low-dimensional space. The resulting plot will 
group similar cells together into visual clusters (not assigned, just 
apparent) of similar density while separate clusters indicate different 
cell types. However, the optimization only preserves relative distances 
within these clusters, while the distances between islands are mean-
ingless. This effect can be softened72, but this hampers the ability to 
resolve fine-grained structures and comes at a large computational cost. 
Wattenberg et al. provide a general understanding of the significance of 
the various parameters73. Belkina et al. have particularly investigated 
and modified the parameters in FCM for massive data74 to gain addi-
tional knowledge about the different parameters. The algorithm’s per-
formance is constrained by its computational capacity and several 
methods have aimed to accelerate it52,54,75,76. All these techniques can 
also be combined with automated optimal parameter estimation74. 
t-SNE embeddings can now be computed for millions of data points 
thanks to these optimizations. Even with a t-SNE approach that can 
handle millions of data points, fine-grained structures will often be 
obscured due to their small visual space. Hierarchical SNE77 builds a 
hierarchy on the data and allows interactive exploration through a 
divide and conquer procedure53. 

UMAP 
UMAP 58 has recently been evaluated for cytometry data analysis 57 

to generate similar visualizations as t-SNE. UMAP seeks to replicate 
t-SNE’s success, but it also measures global distances and provides a 
significant performance boost by skipping normalization of data on both 
high- and low-dimensional representations. Unlike t-SNE, 2D plots 
generated by UMAP are continuous in nature allowing better inference 
of cell lineages. UMAP has been applied in ML pipelines for classification 
of B-cell neoplasms4. 

PHATE 
Potential of Heat-diffusion for Affinity-based Trajectory Embedding 

(PHATE) was developed specifically for biological datasets to overcome 
limitations of PCA, t-SNE, and UMAP related to sensitivity to noise, 
scalability to large datasets, and interpretability in 2-dimensional plots. 
PHATE dimensionality reduction plots provide a denoised visualization 
that is insensitive to user configurations and preserves and emphasizes 

global and local structure including transitions and clusters. In a head- 
to-head comparison of dimensionality reduction methods using simu-
lated scRNAseq data, PHATE appears to capture the true structure of 
high-dimensional data best 59. As tracking cell trajectories is typically 
not a priority with clinical flow cytometry, the role of PHATE in analysis 
pipelines is not clear. However, PHATE was recently used in immune 
cell profiling identifying multimodal signatures of COVID-19 including 
flow cytometry60. Given the scalability and unique topology PHATE 
provides, it is likely to appear in more open-source MFC tools going 
forward. 

Dimensionality reduction enables human-interpretable insights into 
high-dimensional data via a 2D or 3D plot and is often combined with 
clustering algorithms and supplementary information for deeper in-
sights into biological phenomena. viSNE51 plots show each data point as 
a color, and multiple plots with different markers overlaid can be used to 
interpret the biological significance of each cell and manually cluster. 
Latent representations generated by t-SNE relate to spectral clustering 
algorithm in that t-SNE embeddings can be produced using automatic 
clustering like with ACCENSE50 or Cytosplore 49 where the resulting 
clusters may be inspected through heatmaps. 

Supervised classification of cell identity 

Supervised algorithms incorporate user input in the form of labels. 
Often for MFC projects, cell identities are assigned by manual gating. In 
a simple scenario with MFC data, a supervised classifier is trained on a 
part of the dataset using the cell identity labels given produced by 
manual gating (Fig. 2 Top). Once trained, the classifier is then able to 
infer labels on similar (unlabeled) input data. Thus, supervised ap-
proaches are well-suited to replicating gating strategies and identifying 
target cell populations of interest. Some approaches, like OpenCyto 65, 
flowDensity 62, or flowLearn 63, use an explicit, template-based 
approach to mimic the manual gating process (Fig. 2 Top). 
Template-based models offer superior customization and interpret-
ability over ML/DL supervised classifiers but at the cost of being con-
strained to a single, explicit procedure for reaching the desired output. 
ML models, especially DL models, can account for sources of bias and 
confounding variability, provided the dataset is carefully crafted, at a 
scale that would be difficult to replicate with a template-based 
approach. For example, in a study using a 3-layer deep neural network 
where labels for every event were provided, the uncompensated MFC 
data yielded accurate cell population identities and little to no pre-
processing was required78. 

The classic tradeoff has been that DL models are difficult to interpret, 
but innovative approaches like an ensemble of CNNs79 create inter-
pretable architectures while simultaneously leveraging the abstracting 
strength of DL. In addition, information can be gained from probing 
trained ML/DL classifiers via representation learning. For example, re-
searchers used the learned representation of CellCNN, a supervised 
convolutional DL model, to identify rare cell subsets associated with the 
disease61. AI is just reaching the tipping point where it can be applied to 
automate workflows in clinical flow cytometry, provided there is a large 
enough dataset with highly standardized marker panels and procedures. 
For example, reports with numeric and phenotypic alterations as well as 
sample quality and relevant comments and conclusions can be generated 
automatically for clinical routines using InfinicytTM and EuroFlowTM 

Databases. 

Examples of cell discovery and immune profiling using AI 

In the past several years, there have been many exploratory cell 
subpopulation analyses related to hematological diseases. Baumgaertner 
et al. used MegaClust to identify CD4+HLA-DR+ and NKT-like subsets 
from peripheral blood samples of patients with prostate cancer under-
going radiation therapy37. PhenoGraph was used with v-SNE in a pipe-
line to identify neoplastic T-cell populations from routine clinical 
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MFC48. Lownik et al. used PhenoGraph followed by UMAP to train a 
random forest model to predict novel sample cell population cluster 
labels and UMAP-embedded coordinates80. Cytofast, an R package via 
Bioconductor, was used to identify macrophage subsets that signifi-
cantly decrease upon cancer immunotherapy and distinct prime-boost 
effects of prophylactic vaccines on the myeloid compartment64. The 
Cytofast package uses clusters from either Cytosplore, using SPADE 
followed by A-tSNE52, or FlowSOM. 

In a recent study, TerraFlow, a commercial data analysis tool for 
immune profiling, was used to characterize changes in the systemic T- 
cell compartment between healthy and donors with classical Hodgkin 
lymphoma (cHL) pre-treatment and between pre-treatment cHL and 
post-treatment cHL66. Their results suggest the cHL systemic T-cell 
compartment shifts toward an exhausted profile and away from less 
differentiated cells with the potential for self renewal, as well as a shift 
from T-1 and T-2 helper type toward T-17 helper cells with diminished 
T-cell effector functions. 

Supervised sample classification 

An emerging trend is to use a ML supervised approach for classifi-
cation of MFC data at the sample level (Fig. 2 Bottom). Rather than 
producing labels for the individual cells, these classifiers are trained on 
sample-level labels such as the presence of disease or whether an add-on 
tube is required. Sample-level models have shown robust ability to 
classify a variety of hematological cancers. 

B-cell neoplasms 
Ng and Zuromski used UMAP embeddings for over 2,500 B-cell 

neoplasms and normal cases to train a random forest classifier4. The 
model could be adjusted to 100% sensitivity, albeit at 14% specificity, to 
allow for 11% of the cases to be autoverified without human interven-
tion. Gaidano et al. used a dataset of 1465 cases of B-cell non-Hodgkin 
lymphomas to train a decision tree that learned insightful rules for 
aiding in diagnosis81. Zhao et al. used SOM-transformed data from 18, 
274 cases of a variety of mature B-cell neoplasm to train a convolutional 
neural network (CNN), a specific type of DL model, and tested it on a test 
set of 2,348 cases achieving an F1 score of 0.942. 

Minimum residual disease and acute leukemia 
Ko et al. used 4039 MFC cases from patients without diseased cells 

and patients with acute myeloid leukemia (AML) or myelodysplastic 
syndrome (MDS) to fit a gaussian mixture model and produce Fisher- 
vectors that were then used to train a support vector machine 
(SVM)82. To test the model’s ability to monitor for MRD, the trained 
SVM predicted labels for 287 MFC samples from post-induction patients 
and tasked with classifying them as normal or diseased, on which the 
accuracy ranged from 84.6% – 92.4%. A similar approach was used in a 
study by Monaghan et al. to classify between acute leukemias and 
nonneoplastic cytopenias83, in which 531 patients with either acute 
myeloid leukemia, acute promyelocytic leukemia, acute lymphoblastic 
leukemia, or nonneoplastic cytopenias were processed in a similar 
technical manner. Rajwa et al. used ASPIRE to predict disease progres-
sion of AML patients following induction therapy by mapping cell 
populations pre- and post-induction84. 

Hodgkin lymphoma 
Simonson et al. used 1,222 MFC cases to train and test a model 

composed of ensemble of CNNs (convolutional neural networks), where 
each CNN mapped to a single 2D histogram, that fed their intermediate 
predictions to a random forest classifier model for classifying Hodgkin 
lymphoma79. The model achieved an area under the receiver operator 
characteristic (AUC) of 0.93 with tight confidence intervals from 
five-fold cross validation and achieving sensitivity of 0.80 at a specificity 
of about 0.90. The model was readily interpretable, thanks to each of its 
CNN components mapping to a single 2D histogram, from which 

Shapley additive explanation values could explain the most impactful 
markers for prediction. 

Using their automated computing platform, TerraFlow, Freeman 
et al. generated phenotypes capturing the major differences between 25 
healthy and 44 newly diagnosed cHL donors. They trained a linear 
regression on intensity values of the phenotype markers to classify 
whether the MFC sample belonged to a cHL or healthy patient and 
showed an AUC of 0.93 on the test set (1.0 sensitivity at about 0.67 
specificity). Samples from the same cHL patients 3 months post- 
treatment were processed in a similar manner and the regression 
model achieved an AUC of 0.79. Thus, TerraFlow engineers the marker 
combinations (phenotypes) with the most predictive features between 
classes enabling a simple linear regression model to achieve promising 
performance . 

Companies using machine learning for clinical cytometry 

As we continue to delve deeper into the nuances of the immune 
system, increasing computational power, dataset sizes, and advanced 
tuned reagents and instruments can help with disease insights, precision 
medicine, drug discovery, and disease monitoring. Below are four 
biotechnology startups that are driving forward the capabilities in 
clinical cytometry research studies and routine immune profiling and 
monitoring. 

Teiko.bio 

Teiko.bio offers custom panels and computational methods to 
perform immune profiling via mass cytometry to provide insights into 
target identification and patient response across cancer85–87, autoim-
mune diseases88–90, and infectious diseases91–93. 

Cytek 

Cytek is the first company to offer flow cytometry for simultaneous 
measurement of over 40 fluorescent markers94 with current clinical 
applications in immune profiling and multi-site standardization. 

Ozette 

Ozette is a computational immune profiling company that has 
“created an interpretable machine-learning method that discovers and 
annotates cell populations, leveraging cloud computing to massively 
serialize the analysis. The result is an automated single-cell analysis 
platform with unprecedented speed, dimensionality, and annotation 
depth.” 

TerraFlow bioinformatics 
TerraFlow provides an immunophenotyping platform built expressly 

for clinicians and researchers to identify novel biomarkers and disease- 
associated cell types. The TerraFlow platform returns explicit gating 
strategies for each disease-associated cell subpopulation identified by its 
core algorithm, enabling operator-independent reproducibility across 
samples and runs. 

Discussion 

For MFC and mass cytometry, the number of supervised approaches 
has historically lagged unsupervised approaches but is beginning to see 
an uptick especially at the sample level. Cheung et al. provided a 
detailed account in 2020 of supervised and unsupervised algorithms for 
MFC data analysis, including if the algorithms were implemented inside 
of a GUI, and whether they were accessible for free or through a paid 
platform95. While unsupervised approaches can be conceptualized and 
immediately coded and tested on data, supervised approaches require a 
significant upfront investment in the form of the dataset. As a rule of 
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thumb, supervised approaches perform better with more data. The curse 
of dimensionality states that as the feature space increases in size, the 
amount of data needed increases exponentially5. Given the 
high-dimensional nature of flow cytometry, typically hundreds or 
thousands of gated or labeled samples are needed for a reasonable level 
of performance, as illustrated by the studies detailed above in 2.7. This 
requires a large upfront investment of time by the pathologist(s) to 
inspect and gate each sample. However, supervised approaches are 
gaining traction as they tend to be more accurate once a large enough, 
high-quality dataset is amassed. While conceptualizing supervised 
versus unsupervised can be useful for understanding what approach is 
best, it is the combination of approaches that is the most powerful – 
unlocking biological insights and creating automated cell classifiers. 

Cytometry-inspired AI is just one aspect of how big data, ML, auto-
mation, and clinical decision support promise to revolutionize the field 
of hematopathology96. Clinical diagnosis considers not just immuno-
phenotyping but also morphology, cytogenetics, molecular genetics, and 
a growing number of multi-omics approaches. Advances in AI promise to 
automate cell identification, uncover deeper insights into meaningful 
immune cell subpopulations and serve as clinical decision support 
systems. 

Appendix 

Especially helpful review articles: 
- Cossarizza et al. 2019 97 

- Rybakowska et al. 2020 98 
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